Переход в Новую Эру Водолея 2012 - 2024 год :: Эзотерика и Непознанное :: Космос и Вселенная :: Мониторинг Окружающей Среды

Мониторинг изменения частоты вибраций планеты Земля.

Автор Aurapiter - 26 мая, 2011  |  Просмотров: 10,821

Обращаю Ваше внимание на то, что это не Резонансная частота Шумана, а вибрации Астрального тела Земли.

Соответствие Духовных вибраций Человека земным - является залогом его успешного перехода в Четвертое Измерение.

16.08.2009 - 55 Гц

18.08.2009 - 59 Гц

28.09.2009 - 116 Гц

07.10.2009 - 126 Гц

13.10.2009 - 133 Гц

19.10.2009 - 137Гц

31.10.2009 - 143 Гц

04.11.2009 - 152 Гц

16.11.2009 - 176 Гц

21.11.2009 - 183 Гц

22.11.2009 - 187 Гц

01.12.2009 - 206 Гц

07.12.2009 - 213 Гц

17.01.2010 - 256 Гц

14.03.2010 - 272 Гц

15.07.2010 - 401 Гц

28.07.2010 - 270 Гц

13.10.2010 - 175 Гц

24.10.2010 - 227 Гц

11.03.2011 - 152 Гц (Землятресение в Японии)

20.03.2011 - 50 Гц

30.03.2011 - 109 Гц


58 комментариев к записи “Мониторинг изменения частоты вибраций планеты Земля.”

Страницы: « 1 2 3 [4]

  1. То что я точно знаю ,и даже проверял ,дети кричат(плачут) на частотах 450-480 герц.А только вылезшие из лона-диапазон еще уже .
    Вот я музыкант ,и мой диапазон слышимости примерно с 35 герц до 14 кгц.
    На 13 кгц уже писк ,который не вопринимается.
    Может и есть феномены ,которые слышат и до 18 кгц.

    Цитировать
  2. Может и есть феномены ,которые слышат и до 18 кгц.

    вообще-то слышимый “обычными” людьми диапазон уже, чем привела Сканира -
    16 кГц. До 20кГц слышат музыканты, но судя по тебе, не все :-p

    Цитировать
  3. А я анти скептик. и верю вам. а почему бы и нет. написал вам в личку. жду ответа.. :)
    (особенно про искорки как нить подробнее расскажите)

    Цитировать
  4. Antiskeptik:А я анти скептик. и верю вам. а почему бы и нет.
    Лично я разделяю понятия на стадии: Вера, Не исключаю возможности(а почему бы и нет),не верю.
    Aurapiter: Подтвердите что нибудь. А то 2-я стадия перерастает в 3-ю

    Цитировать
  5. Не исключаю возможности(а почему бы и нет

    да, так.

    Цитировать
  6. Видимо, необходимо уточнение - о колебаниях какой среды мы говорим… если воздушная среда колеблется с частотой 50 гц - слышен звук, если это колебания электрического поля - не услышим ничего (все наши электросети переменного тока - 50 гц) :)

    Цитировать
  7. 50 гц-если устройство трансформаторное ,то слышно.
    Интересно ,собирал раньше катушки Тесла.Ну и подсмотрел ,как сделать музыкальную.Самое интересное ,что частота резонанса в зависимости от намотки варьировалась от 200 кгц(ольшие кат.)до 1,2 МГЦ(маленькие,быстро взрывающиеся)А звук от искры был слышим от 400 гц ,до шипения(это примерно 18 кгц)

    Цитировать
  8. Речь идет о частотах “других” которые автор, якобы ,получил находясь в “трансе” и выражаются они в Гц ,потому что название(в чем измерять) им еще не придумано.

    Цитировать
  9. Зачем вводить понятие Гц если это совсем другое?)только путаница.)написали бы единиц.

    Цитировать
  10. kirass, многие на этом сайте как раз и слышат гул как от трансформаторной будки. Как раз 50Гц. И, говорят, тональность гула увеличивается.

    Цитировать
  11. написали бы единиц

    Так как частота колебаний электрического тока (которого не слышно и не видно) и частота колебаний воздушных волн (которые можно слышать) измеряются в Герцах, то и частотные колебания других энергетических волн (Мозговые волны 14-100Гц -Бета-волны, Электро-магнитное поле сердца 700-800 Гц) и Тонкие Энергии принято измерять в Герцах.

    Цитировать
  12. Бинго!!! )) читаем- “Герц, единица частоты. Названа в честь Генриха Герца. Сокращённое обозначение: русское гц, международное Hz. 1 Герц (единица частоты) - частота периодического процесса, при которой за время в 1 сек происходит один цикл процесса. Широко применяются кратные единицы от Герц (единица частоты) - килогерц (103 гц), мегагерц (106 гц) и др.”
    Звук, в широком смысле — колебательное движение частиц упругой среды, распространяющееся в виде волн в газообразной, жидкой или твёрдой средах (см. также Упругие волны) в узком смысле — явление, субъективно воспринимаемое специальным органом чувств человека и животных. Человек слышит З. с частотой от 16 гц до 20 000 гц. Физическое понятие о З. охватывает как слышимые, так и неслышимые звуки. З. с частотой ниже 16 гц называется инфразвуком, выше 20 000 гц — ультразвуком; самые высокочастотные упругие волны в диапазоне от 109 до 1012—1013 гц относят к гиперзвуку. Область инфразвуковых частот снизу практически не ограничена — в природе встречаются инфразвуковые колебания с частотой в десятые и сотые доли гц. Частотный диапазон гиперзвуковых волн сверху ограничивается физическими факторами, характеризующими атомное и молекулярное строение среды: длина упругой волны должна быть значительно больше длины свободного пробега молекул в газах и больше межатомных расстоянии в жидкостях и в твёрдых телах. Поэтому в воздухе не может распространяться гиперзвук с частотой 109 гц и выше, а в твёрдых телах — с частотой более 1012—1013 гц.

    Основные характеристики звука. Важной характеристикой З. является его спектр, получаемый в результате разложения З. на простые гармонические колебания (т. н. частотный звука анализ). Спектр бывает сплошной, когда энергия звуковых колебаний непрерывно распределена в более или менее широкой области частот, и линейчатый, когда имеется совокупность дискретных (прерывных) частотных составляющих. З. со сплошным спектром воспринимается как шум, например шелест деревьев под ветром, звуки работающих механизмов. Линейчатым спектром с кратными частотами обладают музыкальные З. (рис. 1); основная частота определяет при этом воспринимаемую на слух высоту звука, а набор гармонических составляющих — тембр звука. В спектре З. речи имеются форманты — устойчивые группы частотных составляющих, соответствующие определённым фонетическим элементам (рис. 2). Энергетической характеристикой звуковых колебаний является интенсивность звука — энергия, переносимая звуковой волной через единицу поверхности, перпендикулярную направлению распространения волны, в единицу времени. Интенсивность З. зависит от амплитуды звукового давления, а также от свойств самой среды и от формы волны. Субъективной характеристикой З., связанной с его интенсивностью, является громкость звука, зависящая от частоты. Наибольшей чувствительностью человеческое ухо обладает в области частот 1—5 кгц. В этой области порог слышимости, т. е. интенсивность самых слабых слышимых звуков, по порядку величины равна 10-12вм/м2, а соответствующее звуковое давление — 10-5н/м2. Верхняя по интенсивности граница области воспринимаемых человеческим ухом З. характеризуется порогом болевого ощущения, слабо зависящим от частоты в слышимом диапазоне и равным примерно 1 вм/м2. В ультразвуковой технике достигаются значительно большие интенсивности (до 104 квм/м2).

    Источники звука — любые явления, вызывающие местное изменение давления или механическое напряжение. Широко распространены источники З. в виде колеблющихся твёрдых тел (например, диффузоры громкоговорителей и мембраны телефонов, струны и деки музыкальных инструментов; в ультразвуковом диапазоне частот — пластинки и стержни из пьезоэлектрических материалов или магнитострикционных материалов). Источниками З. могут служить и колебания ограниченных объёмов самой среды (например, в органных трубах, духовых музыкальных инструментах, свистках и т.п.). Сложной колебательной системой является голосовой аппарат человека и животных. Возбуждение колебаний источников З. может производиться ударом или щипком (колокола, струны); в них может поддерживаться режим автоколебаний за счёт, например, потока воздуха (духовые инструменты). Обширный класс источников З. — электроакустические преобразователи, в которых механические колебания создаются путём преобразования колебаний электрического тока той же частоты. В природе З. возбуждается при обтекании твёрдых тел потоком воздуха за счёт образования и отрыва вихрей, например при обдувании ветром проводов, труб, гребней морских волн. З. низких и инфранизких частот возникает при взрывах, обвалах. Многообразны источники акустических шумов, к которым относятся применяемые в технике машины и механизмы, газовые и водяные струи. Исследованию источников промышленных, транспортных шумов и шумов аэродинамического происхождения уделяется большое внимание ввиду их вредного действия на человеческий организм и техническое оборудование.

    Приёмники звука служат для восприятия звуковой энергии и преобразования её в др. формы. К приёмникам З. относится, в частности, слуховой аппарат человека и животных. В технике для приёма З. применяются главным образом электроакустические преобразователи: в воздухе — микрофоны, в воде — гидрофоны и в земной коре — геофоны. Наряду с такими преобразователями, воспроизводящими временную зависимость звукового сигнала, существуют приёмники, измеряющие усреднённые по времени характеристики звуковой волны, например диск Рэлея, радиометр.

    Распространение звуковых волн характеризуется в первую очередь скоростью звука. В газообразных и жидких средах распространяются продольные волны (направление колебательного движения частиц совпадает с направлением распространения волны), скорость которых определяется сжимаемостью среды и её плотностью. Скорость З. в сухом воздухе при температуре 0°С составляет 330 м/сек, в пресной воде при 17°С — 1430 м/сек. В твёрдых телах, кроме продольных, могут распространяться поперечные волны, с направлением колебаний, перпендикулярным распространению волны, а также поверхностные волны (Рэлея волны). Для большинства металлов скорость продольных волн лежит в пределах от 4000 м/сек до 7000 м/сек, а поперечных — от 2000 м/сек до 3500 м/сек.

    При распространении волн большой амплитуды (см. Нелинейная акустика)фаза сжатия распространяется с большей скоростью, чем фаза разрежения, благодаря чему синусоидальная форма волны постепенно искажается и звуковая волна превращается в ударную волну. В ряде случаев наблюдается дисперсия звука, т. е. зависимость скорости распространения от частоты. Дисперсия З. приводит к изменению формы сложных акустических сигналов, включающих ряд гармонических составляющих, в частности — к искажению звуковых импульсов. При распространении звуковых волн имеют место обычные для всех типов волн явления интерференции и дифракции. В случае, когда размер препятствий и неоднородностей в среде велик по сравнению с длиной волны, распространение звука подчиняется обычным законам отражения и преломления волн и может рассматриваться с позиций геометрической акустики.

    При распространении звуковой волны в заданном направлении происходит постепенное её затухание, т. е. уменьшение интенсивности и амплитуды. Знание законов затухания практически важно для определения предельной дальности распространения звукового сигнала. Затухание обусловливается рядом факторов, которые проявляются в той или иной степени в зависимости от характеристик самого звука (и в первую очередь, его частоты) и от свойств среды. Все эти факторы можно подразделить на две большие группы. В первую входят факторы, связанные с законами волнового распространения в среде. Так, при распространении в неограниченной среде З. от источника конечных размеров интенсивность его убывает обратно пропорционально квадрату расстояния. Неоднородность свойств среды вызывает рассеяние звуковой волны по различным направлениям, приводящее к ослаблению её в первоначальном направлении, например рассеяние З. на пузырьках в воде, на взволнованной поверхности моря, в турбулентной атмосфере (см. Турбулентность), рассеяние высокочастотного ультразвука в поликристаллических металлах, на дислокациях в кристаллах. На распространение З. в атмосфере и в море влияет распределение температуры и давления, силы и скорости ветра. Эти факторы вызывают искривление звуковых лучей, т. е. рефракцию З., которая объясняет, в частности, тот факт, что по ветру З. слышен дальше, чем против ветра. Распределение скорости З. с глубиной в океане объясняет наличие т. н. подводного звукового канала, в котором наблюдается сверхдальнее распространение З., например З. взрыва распространяется в таком канале на расстояние более 5000 км.

    Вторая группа факторов, определяющих затухание З., связана с физическими процессами в веществе — необратимым переходом звуковой энергии в др. формы (главным образом в тепло), т. е. с поглощением звука, обусловленным вязкостью и теплопроводностью среды (”классическое поглощение”), а также переходом звуковой энергии в энергию внутримолекулярных процессов (молекулярное или релаксационное поглощение). Поглощение З. заметно возрастает с частотой. Поэтому высокочастотный ультразвук и гиперзвук распространяются, как правило, лишь на очень малые расстояния, часто всего на несколько см. В атмосфере, в водной среде и в земной коре дальше всего распространяются инфразвуковые волны, отличающиеся малым поглощением и слабо рассеиваемые. На высоких ультразвуковых и гиперзвуковых частотах в твёрдом теле возникает дополнительное поглощение, обусловленное взаимодействием волны с тепловыми колебаниями кристаллической решётки, с электронами и со световыми волнами. Это взаимодействие при определённых условиях может вызвать и “отрицательное поглощение”, т. е. усиление звуковой волны.

    Значение звуковых волн, а следовательно, и их изучение, которым занимается акустика, чрезвычайно велико. С давних пор З. служит средством связи и сигнализации. Изучение всех его характеристик позволяет разработать более совершенные системы передачи информации, повысить дальность систем сигнализации, создать более совершенные музыкальные инструменты. Звуковые волны являются практически единственным видом сигналов, распространяющихся в водной среде, где они служат для целей подводной связи, навигации, локации (см. Гидроакустика). Низкочастотный звук является инструментом исследования земной коры. Практическое применение ультразвука создало целую отрасль современной техники — ультразвуковую технику. Ультразвук используется как для контрольно-измерительных целей (в частности, в дефектоскопии), так и для активного воздействия на вещество (ультразвуковая очистка, механическая обработка, сварка и т.п.). Высокочастотные звуковые волны и особенно гиперзвук служат важнейшим средством исследований в физике твёрдого тела.”

    Цитировать
  13. Переменный ток, в широком смысле электрический ток, изменяющийся во времени. Обычно в технике под П. т. понимают периодический ток, в котором среднее значение за период силы тока и напряжения равно нулю. Периодом Т П. т. называют наименьший промежуток времени (выраженный в сек), через который изменения силы тока (и напряжения) повторяются (рис. 1). Важной характеристикой П. т. является его частота f — число периодов в 1 сек: f = 1/Т. В электроэнергетических системах СССР и большинства стран мира принята стандартная частота f = 50 гц, в США — 60 гц. В технике связи применяются П. т. высокой частоты (от 100 кгц до 30 Ггц). Для специальных целей в промышленности, медицине и др. отраслях науки и техники используют П. т, самых различных частот, а также импульсные токи (см. Импульсная техника).

    Для передачи и распределения электрической энергии преимущественно используется П. т. благодаря простоте трансформации его напряжения почти без потерь мощности (см. Передача электроэнергии, Электрическая цепь). Широко применяются трёхфазные системы П. т. (см. Трёхфазная цепь). Генераторы и двигатели П. т. по сравнению с машинами постоянного тока при равной мощности меньше по габаритам, проще по устройству, надёжнее и дешевле. П. т. может быть выпрямлен, например полупроводниковыми выпрямителями, а затем с помощью полупроводниковых инверторов преобразован вновь в П. т. другой, регулируемой частоты; это создаёт возможность использовать простые и дешёвые безколлекторные двигатели П. т. (асинхронные и синхронные) для всех видов электроприводов, требующих плавного регулирования скорости.

    П. т. широко применяется в устройствах связи (радио, телевидение, проволочная телефония на дальние расстояния и т. п.).

    П. т. создаётся переменным напряжением. Переменное электромагнитное поле, возникающее в пространстве, окружающем проводники с током, вызывает колебания энергии в цепи П. т.: энергия периодически то накапливается в магнитном или электрическом поле, то возвращается источнику электроэнергии. Колебания энергии создают в цепи П. т. реактивные токи, бесполезно загружающие провода и источник тока и вызывающие дополнительные потери энергии, что является недостатком передачи энергии П. т.

    За основу для характеристики силы П. т. принято сопоставление среднего теплового действия П. т. с тепловым действием постоянного тока соответствующей силы. Полученное таким путём значение силы П. т. I называется действующим (или эффективным) значением, математически представляющим среднеквадратичное за период значение силы тока. Аналогично определяется и действующее значение напряжения П. т. U. Амперметры и вольтметры П. т. измеряют именно действующие значения тока и напряжения.

    Цитировать

Страницы: « 1 2 3 [4]


Оставить комментарий

Вы должны быть авторизованы для публикации комментариев. Если Вы не зарегистрированы в сообществе, то это можно сделать тут.

Либо посетите наш форум и оставьте сообщение без регистрации.

Вы можете посмотреть наши интересные категории, если ещё их не посмотрели:
Избранное
Видео о конце света
Календарь майя - никаких тайн
Тайны и мифы
Космос и астрономия

Если забыли, Вы находитесь в статье: Мониторинг изменения частоты вибраций планеты Земля.